

L'Energia Nucleare è il futuro? Panoramica Generale – Parte I

Pisa, 14 Maggio 2009

Sergio Orlandi Direttore Generale

Ripartire con il nucleare... in Italia!?

Una domanda legittima, dopo venti anni di ostracismo a tutti i livelli.

<u>I giornali</u>

- ⇒ "Un'occasione persa: inutile piangere sul latte versato"
- ⇒ "Gli italiani col referendum hanno messo una pietra tombale sull'energia atomica"

I testi scolastici

- ⇒ "Gli impianti nucleari sono costruiti quasi esclusivamente dai paesi che hanno sviluppato una tecnologia militare basata sulle armi atomiche..."
- ⇒ "Il vantaggio di produrre un'enorme quantità di energia a costi più bassi non è sufficiente a compensare gli svantaggi costituiti dalla difficoltà di smaltimento delle scorie, dalla sicurezza degli impianti e dal costo elevato di costruzione

Ripartire con il nucleare in Italia: impossibile?

Vengono avanzate almeno tre tipologie di problematiche:

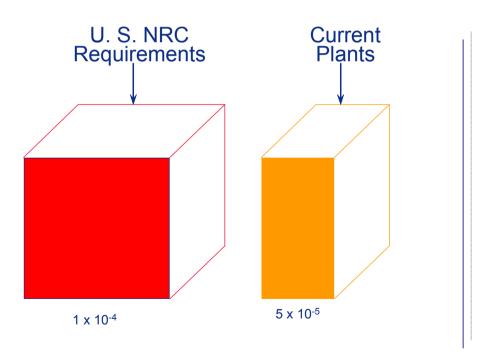
- → PROBLEMATICHE TECNICHE
- → MANCANZA DI COMPETENZE
- → CERTEZZA DELLE REGOLE

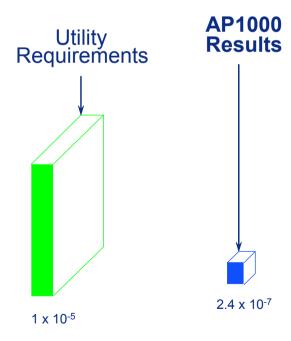
E' necessario aspettare una nuova generazione di impianti più sicuri?

- ⇒ Gli impianti attuali hanno cumulato più di 11.000 anni di funzionamento
- ⇒ La *terza generazione* è stata messa in cantiere già prima di Chernobyl, per consentire di raggiungere *maggiore sicurezza a minori costi*
- ⇒ L'Italia ha dato un significativo contributo al loro sviluppo: il Piano Energetico Nazionale (PEN) del 1988 chiedeva di studiare reattori a maggior sicurezza intrinseca e passiva
- ⇒ ENEA, ENEL, ANSALDO NUCLEARE ed UNIVERSITA' ITALIANE hanno partecipato ai programmi USA con studi, realizzazione di prototipi, verifiche sperimentali

Aspettare una nuova generazione di impianti?

- ⇒ La messa a punto dei nuovi impianti, fino alla definitiva approvazione dell'Autorità di Sicurezza dei relativi Paesi, ha richiesto almeno 15 anni
- ⇒ Gli impianti di terza generazione stanno arrivando <u>ora</u> sul mercato:

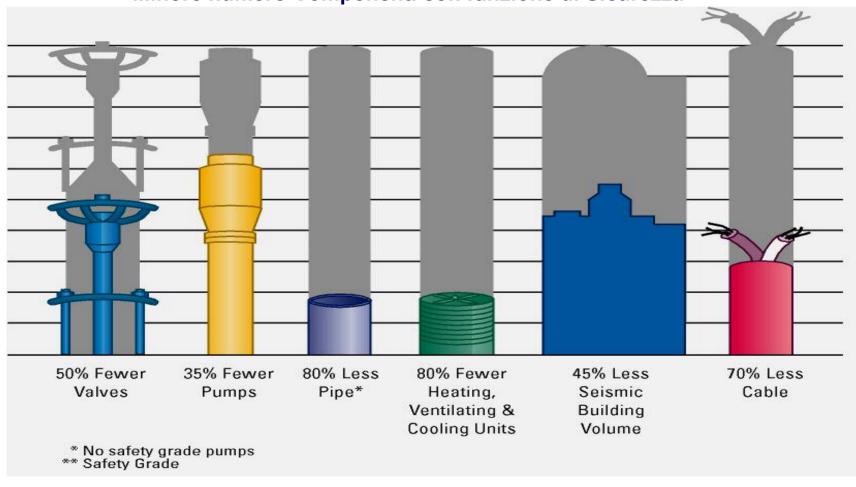

Ordini EPR		Ordini AP1000	
 Olkiluoto (FIN) Flamanville (F) Taishan 1&2 (RPC) 	2004 2006 2007	Sanmen 1&2 (RPC) • Hangjan 1&2 (RPC) • Vogtle 1&2 (USA) • E&G Summer 1&2 (USA) • Levy county, Florida 1&2	2007 2007 Apr. '08 May '08 Dec '08
		Levy County, Horida 182	DCC 00


Aspettare una nuova generazione di impianti?

III GENERAZIONE: MAGGIORE SICUREZZA

Riduzione Probabilità accadimento Incidente Severo

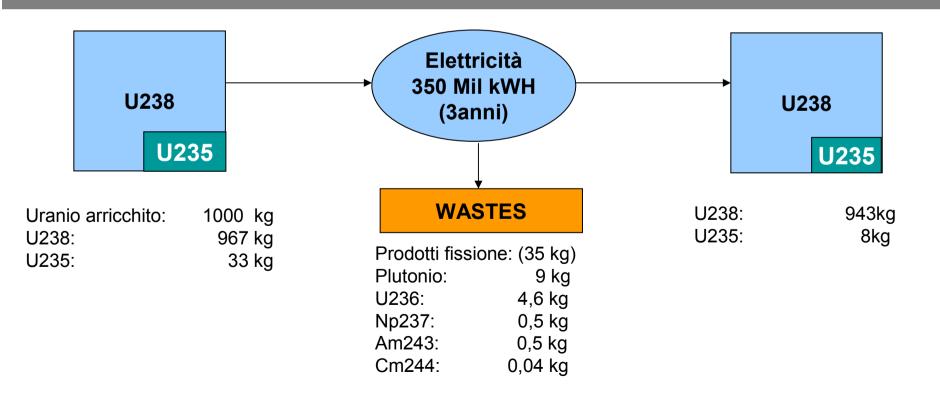
GENERAZIONE PREGRESSA


III GENERAZIONE

Aspettare una nuova generazione di impianti?

MAGGIORE SICUREZZA MINORI COSTI

Minore numero Componenti con funzione di Sicurezza



Esiste una soluzione al problema scorie?

- ⇒ La quantità di rifiuti prodotti da una centrale è estremamente ridotta
- ⇒ Una centrale da 1000 MW utilizza circa 20 ton comb./anno
- ⇒ Solo il 3,5% sono rifiuti: ca. **700 kg/anno per 1000 MW**

VALUTAZIONE "WASTES" PER 1000 KG DI COMBUSTIBILE

Una soluzione al problema scorie

- ⇒ Esistono soluzioni tecnicamente adeguate per il problema scorie radioattive
- ⇒ Il problema delle scorie è un *problema sociale*, non tecnico
- ⇒ Il deposito geologico è una *soluzione tecnicamente adeguata*
- ⇒ L'esperienza suggerisce che il processo di localizzazione di un deposito sia gestito con *trasparenza e partecipazione* come successo in Finlandia.

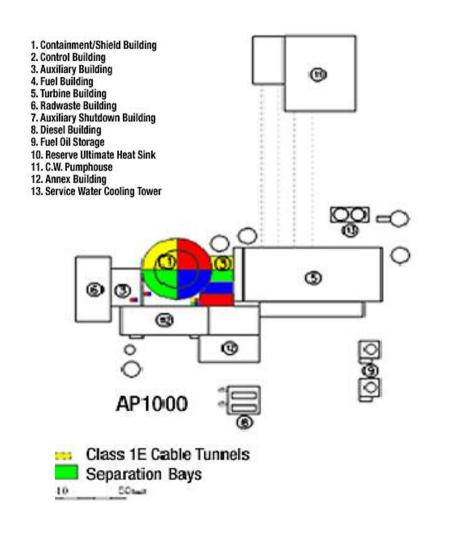
CASO FINLANDESE:

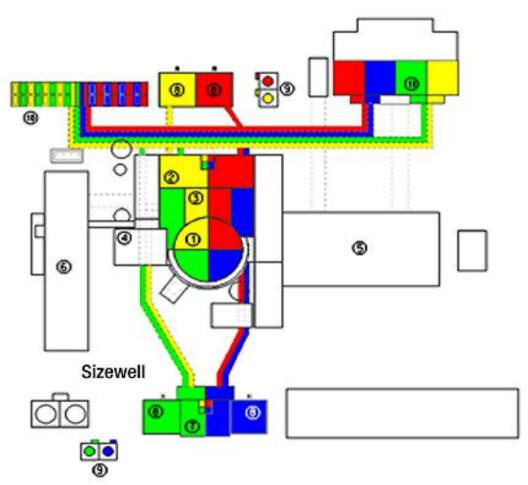
- ✓ a fine anni '90, bocciato il progetto per nuova centrale nucleare per problema scorie irrisolto
- ✓ avviato confronto con varie comunità, fino a raggiungere consenso
- ✓ nel 2003, scelto sito più idoneo
- ✓ nel 2004, ottenuta approvazione parlamentare per centrale Olkiluoto

Quanti siti servono?

- ⇒ 10.000 MW assicurerebbero il 24% dell'energia elettrica richiesta dalla rete italiana nel 2006 (17% della stima 2020)
- ⇒ 10.000 MW sono il 30% della produzione termoelettrica 2006
- ⇒ 10.000 MW richiedono tre-quattro siti, sui quali installare ca. 3.000 MW (due-tre unità)

Ci sono siti idonei in Italia?


- ⇒ Un sito nucleare deve rispettare criteri geologici, sismici, demografici e di refrigerabilità
- ⇒ Alcuni dei siti già utilizzati o qualificati in passato possono essere ancora utilizzati


⇒ Le centrali di terza generazione, progettate per prevenire rilasci di radioattività all'esterno, non necessitano di piani di evacuazione

I siti per nuovi reattori 🗲

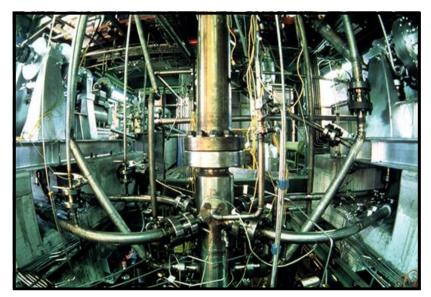
L'area occupata da un AP1000 è molto minore di quella di un impianto di II Generazione.

Costruire e gestire impianti nucleari richiede competenze adeguate a tutti i livelli:

- ⇒ FORMAZIONE ACCADEMICA
- ⇒ RICERCA E SVILUPPO
- ⇒ PROGETTAZIONE E REALIZZAZIONE
- ⇒ ESERCIZIO

L'Italia ha comunque salvato un patrimonio di competenze significative.

La cultura nucleare di base

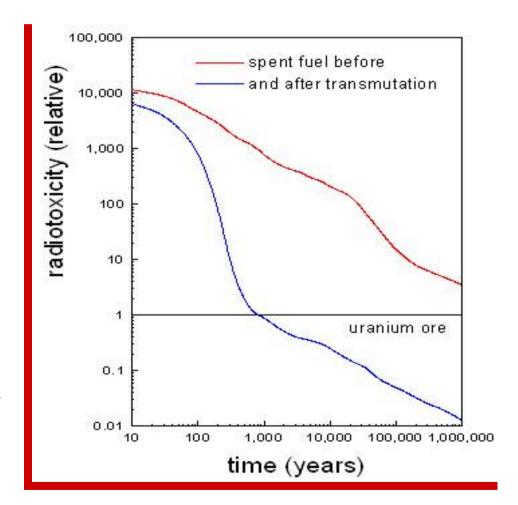

- ⇒ Le Università italiane con corsi di ingegneria nucleare si sono sforzate di sopravvivere costituendosi in consorzio (CIRTEN): esistono quindi strutture accademiche per ripartire
- ⇒ Oggi i laureati in ingegneria nucleare sono circa cento all'anno
- ⇒ Tale numero non è adeguato alla crescente domanda, non solo di industrie italiane ma anche estere
- ⇒ ANSALDO NUCLEARE negli ultimi tre anni ha assunto più di 40 risorse (turnover del 25%)

Competenze nella tecnologia dei reattori della III^a Generazione

ANSALDO NUCLEARE ha dato un significativo contributo allo sviluppo dei Reattori Nucleari di terza generazione negli ultimi venti anni, partecipando estensivamente ai programmi USA per reattori passivi

Prova integrale a piena altezza refrigerazione di emergenza per AP600/AP1000 ENEA/SIET Piacenza

Prototipo Isolation Condenser per ESBWR
Progetto e fabbricazione Ansaldo
Prove ENEA/SIET Piacenza


La ricerca: la riduzione delle scorie

La trasmutazione è un processo che permette di ridurre quantità, tempi di stoccaggio e radiotossicità dei rifiuti tramite:

- ⇒ IRRAGGIAMENTO CON NEUTRONI AD ALTA ENERGIA
- **⇒** CREAZIONE DI ELEMENTI STABILI
- ⇒ CREAZIONE DI ELEMENTI

 "MENO RADIOATTIVI"

Con un'efficienza di separazione del 99.9% dei prodotti a vita lunga seguita da un processo di trasmutazione il livello di radiotossicità di riferimento può essere raggiunto in circa 700 anni.

La ricerca: la riduzione delle scorie

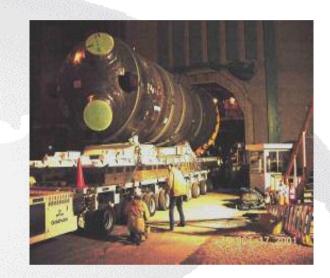
- ⇒ Da un'idea del Prof. Rubbia, ingegnerizzato da ANSALDO NUCLEARE e cofinanziato dal MURST(1999-2001).
- ⇒ Sponsorizzato dalla Comunità Europea nell'ambito del V & VI Programma Quadro.
- ⇒ A differenza di un reattore critico (in cui la reazione a catena si autosostiene), <u>un reattore sottocritico</u> <u>necessita di una sorgente esterna di neutroni</u>
- ⇒ Questi neutroni "extra" vengono prodotti tramite l'utilizzo di un acceleratore di protoni
- ⇒ Il fascio protonico, con un'energia di ~1 GeV e corrente di ~ 10 mA, interagendo con un bersaglio ad alto numero atomico (piombo) produce neutroni con una resa di ~30 neutroni per protone

ACCELERATOR DRIVEN SYSTEM

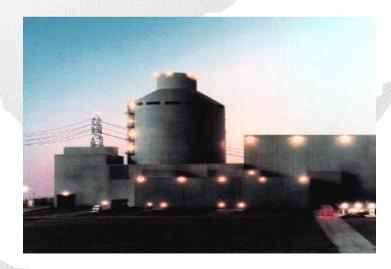
La ricerca: i reattori di quarta generazione

Ansaldo Nucleare è interessata a sviluppare i reattori veloci di IV Generazione.

...un'esperienza che parte dalla realizzazione del primo reattore veloce (Superphenix)



- ⇒ Ansaldo Nucleare è coordinatore del progetto europeo ELSY (*European Lead-cooled System*), per lo sviluppo di un reattore veloce raffreddato con piombo fuso
- ⇒ Al progetto partecipano 14 enti (industrie, utilities, centri di ricerca), tra i quali anche ENEA, CIRTEN ed altre industrie italiane



Le competenze industriali

- ⇒ La maggior parte delle industrie italiane attive ad inizio anni '80 ha abbandonato da tempo il settore
- ⇒ Ansaldo Nucleare è l'unica Azienda Italiana che ha mantenuto competenze industriali nell'Ingegneria Nucleare operando sul mercato internazionale

Le competenze industriali

La realizzazione di Cernavoda in Romania.

Un progetto Ansaldo Nucleare, in consorzio con Atomic Energy of Canada Ltd (AECL)

Unità 1:

• Contratto 1990

In esercizio 1996

10% produzione elettrica Rumena

Unità 2:

Contratto Marzo '03

In esercizio Sett. '07

• 40% delle attività di Ingegneria & Project Management, per un totale di 275 u/a

Una delle pochissime centrali realizzate in Europa negli ultimi 10 anni

Le competenze industriali

La partecipazione Ansaldo Nucleare ai progetti AP1000.

- ⇒ Progettazione e fornitura del Contenitore Metallico per la prima unità a Sanmen (Cina)
- ⇒ Più di 60 risorse impegnate nella progettazione dell'edificio reattore, di sistemi e componenti dell'isola nucleare, nell'analisi di sicurezza
- ⇒ Più di 260 anni-uomo già consuntivati

Una collaborazione sui nuovi prodotti. Una presenza attiva sui nuovi mercati.

Le competenze industriali

La situazione dell'industria italiana: quantitativamente limitata, qualitativamente adeguata

- ⇒ Si può stimare che il 75% di un impianto potrebbe essere realizzato dall'industria italiana (in passato, più del 90%)
- ⇒ Anche in molti altri Paesi europei l'industria nucleare si è fermata per mancanza di nuovi ordinativi
- ⇒ Necessario partire da subito con nuovi investimenti in mezzi e risorse, cercando di competere per le realizzazioni all'estero, prima ancora che per le possibili realizzazioni in Italia

L'esercizio ed il controllo dell'esercizio

- ⇒ Le competenze di esercizio delle centrali sono andate completamente disperse
- ⇒ L'Autorità di Controllo è ridotta a poche decine di unità di tecnici
- ⇒ Mentre si potrebbe ricorrere all'estero per approvvigionare impianti e componenti, le competenze di esercizio e di controllo andrebbero ripristinate all'interno del Paese.
- ⇒ Necessario avviare da subito una riflessione su come addestrare nuovamente sia operatori che controllori, tramite collaborazioni su progetti concreti

Certezza delle regole

Il processo autorizzativo

- ⇒ Non esistono ostacoli di legge per una ripresa del nucleare in Italia (la moratoria dichiarata dal Parlamento per cinque anni è finita nel 1992)
- ⇒ La normativa per il processo autorizzativo è però ferma agli anni '80 e non è più coerente con le più recenti evoluzioni della legislazione ambientale (es. VIA) ed amministrativa (es. autonomie regionali)
- ⇒ Comunque tale normativa era già allora estremamente complessa
- ⇒ Attualmente sarebbero richieste 24 autorizzazioni.

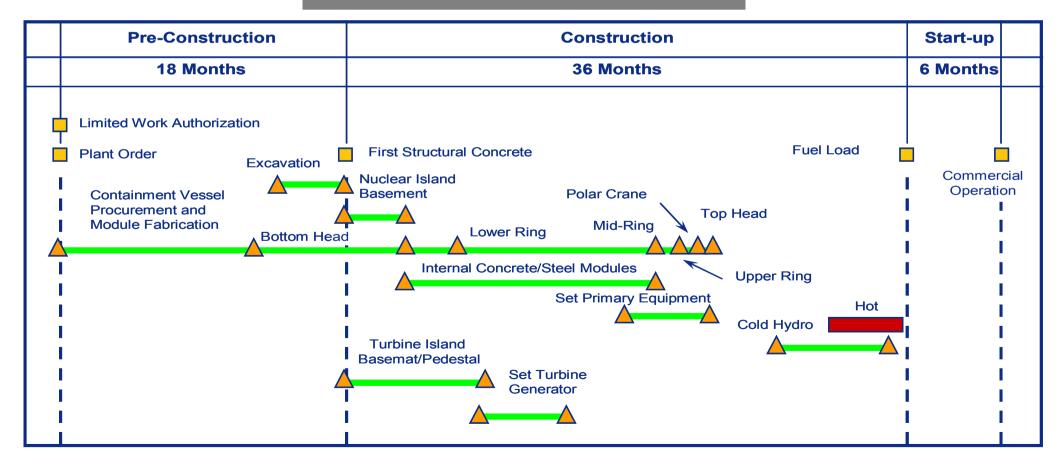
Certezza delle regole

Il processo autorizzativo

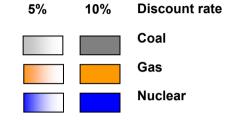
- ⇒ La chiarezza del processo autorizzativo è stato il problema centrale per il rilancio del nucleare USA
- ⇒ One step licensing: basato sulla concessione di un'unica autorizzazione, la Construction & Operation Licence (COL), che consente di costruire l'impianto su basi certe e di poterlo esercire senza rischi di ritardi
- ⇒ Design Certification : viene concessa ad un progetto standard, su richiesta del Vendor; consente di semplificare l'ottenimento della COL
- ⇒ Il Governo americano ha accettato di accollarsi gli oneri di eventuali ritardi nel processo autorizzativo, a valle della COL

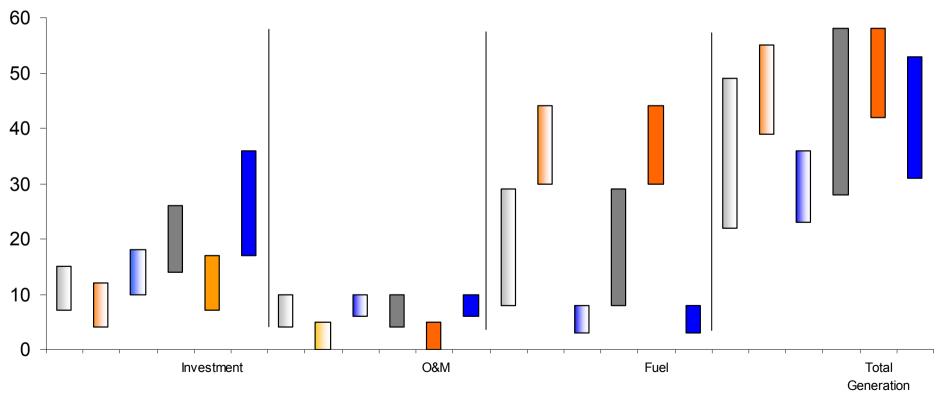
- ⇒ L'investimento economico in un impianto nucleare è molto elevato e ha tempi di ritorno più lunghi di altri investimenti nella power generation
- ⇒ E' necessario dare certezze agli investitori
- ⇒ E' importante definire come verranno quantificati i benefici legati al minor impatto ambientale (riduzione gas serra)

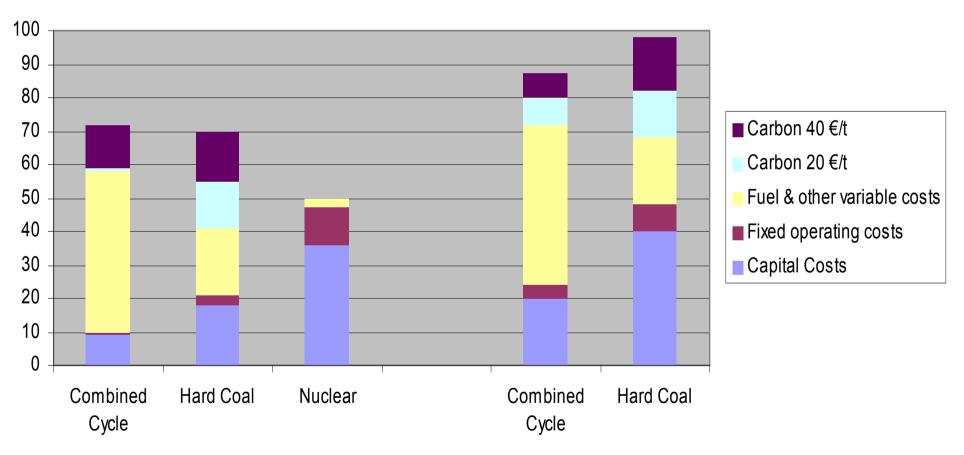
Tempi e costi



- ⇒ I tempi di realizzazione dipendono comunque dalla situazione specifica dell'impianto da realizzare:
 - UTILIZZO PROGETTO STANDARD
 - PROCESSO AUTORIZZATIVO
 - DISPONIBILITÀ LOCALE DI RISORSE ADEGUATE
 - PRECEDENZA NEGLI SLOTS DI PRODUZIONE COMPONENTI SPECIALI
- ⇒ La risoluzione degli ostacoli istituzionali detterà i tempi per l'avvio di future realizzazioni in Italia

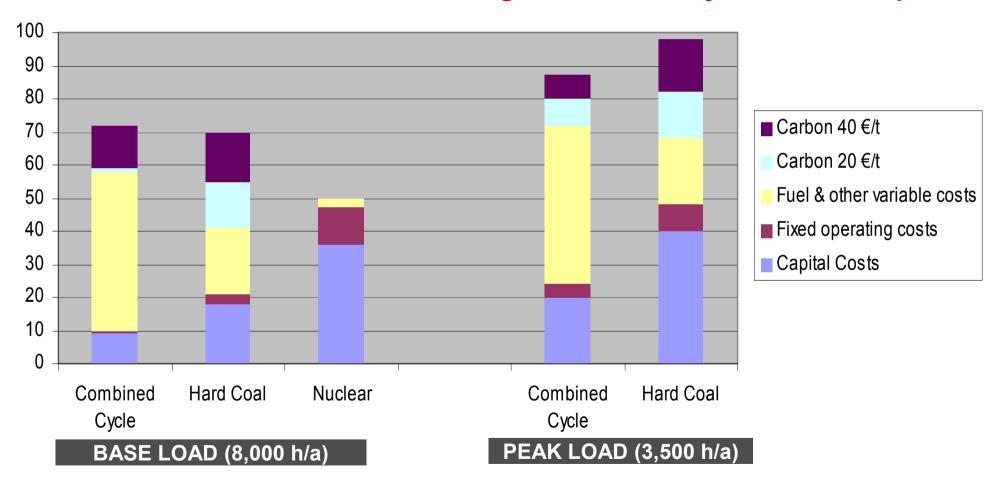

⇒ Un impianto standard può essere costruito in cinque anni, dall'ordine alla messa in servizio commerciale


AP 1000 Construction Schedule



ref. OECD - "PROJECTED COSTS OF GENERATING ELECTRICITY" - 2005 Update

Tempi e costi



Full costs of a new power plant * EUR/MWh

Long Term new entry costs in Europe 1¹

I costi della chiusura del ciclo

- ⇒ La soluzione del problema scorie spetta alle istituzioni, per garantire pieno controllo di materiali pericolosi nel rispetto dell'ambiente e della sicurezza
- ⇒ I costi e i tempi della chiusura del ciclo vanno correttamente definiti, analizzando anche i costi del decommissioning, per trasferirli correttamente agli operatori sin dalla fase di decisione sull'investimento